Next Youngsday








Home / Tech / Apps and software / Hello World in Data Science

Hello World in Data Science


First, a moment to say “Hi!” and a note of gratitude to all Youngsday founders, authors and readers alike for sharing this spot on the blog with me. I hope you’ll find this useful.

Close your eyes and try to visualize “data”. What do you see? Let me guess: it’s probably a white background, black numbers with serif font. Possibly, you have a table organizing those numbers. It looks like a bank statement, telephone bill or worse: just ones and zeros over a wire. The good news is, it’s getting much more interesting than that.

The word’s around the block: data science is a hype and there is more and more big data. Right. But then, other than peeking into your bank accounts for credit scores or e-mails to determine your terrorist affiliations; what do these data scientists do? Anything cool enough for a retweet? Perhaps…

It is true that when working with data we usually end up looking at boring screens with a lot of numbers around, but the repercussions of “data” span much wider. Here are a few examples of what “data” can mean, and what a scientist can beat out of it on a nice day.

Marketing people know the story, some people working for Walmart looked at data and figured out beer sells well with diapers. In math speak, the probability of beer ending up in a supermarket bag with diapers was significantly higher than the average supermarket bag, and this was great business insight. This is the old story. The same people nowadays are creating computer programs that take into account your local weather, your click stream and site usage, and your previous purchases to predict the next product you will buy, and send out a personalized offer. Ever had that moment where you had a freakishly scary offer e-mail or on-line advertisement and said “they’re watching me!”. They are. It’s just that, they’re not humans.

Actually nowadays, the large players are in the business of manually lowering the accuracy of their targeting algorithms; since people do tend to get scared and stop using the service.

When you upload a photo to Facebook, do you ever marvel at how Facebook predicts who the people in that picture are? That’s also data science. Facebook’s machines know which people have a greater probability of co-occuring in the same photo, and also run face recognition on the imagery to identify the people. In the end, an image is also data! You can see your Hollywood selfie, but a machine sees a large matrix of numbers representing colors.

A data scientist has the tools and tricks to predict the species of a bird from a recording of its chirps, the morphology of galaxies from telescope imagery, deduct your feelings on politics from your Twitter content and use that to predict election outcomes. When a high-end SUV predicts when you’re in trouble or gives recommendations based on your driving performance, that’s data science. What Oakland Athletics used sabermetrics to assemble the winning team, they relied on, again, data science.

To see data, you don’t have to close your eyes. But close them again if you will, and imagine yourself walking down the busiest street in your city. Smartphones, security cameras, cars, cash registers, city lights, bus tickets, wi-fi signals are just some of the more readily available, obvious generators of “big data”. This is where we start.


Image Source: Flickr

Caner Türkmen

Leave a Comment

Your email address will not be published. Required fields are marked *


* Copy This Password *

* Type Or Paste Password Here *

Scroll To Top
Sign up for our Newsletter to keep updated for

Enter your email and stay on top of things,

Youngsday on Twitter!
Follow us on Twitter!